Inorg. Chem. **²⁰⁰⁹**, *⁴⁸*, 581-⁵⁸⁷

<u>InorganiciChemistr</u>

Structural Stability and Elastic and Electronic Properties of Rhenium Borides: First Principle Investigations

Huiyang Gou, Zhibin Wang, Jingwu Zhang, Shuting Yan, and Faming Gao*

*Department of Chemical Engineering, Yanshan Uni*V*ersity, Qinhuangdao 066004, China, and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China*

Received August 17, 2008

The structural stability and elastic and electronic properties of rhenium borides with different boron concentration are calculated systemically by means of first principle total energy calculations. The total energy calculations reveal that the WC-type structure is more energetically favorable for ReB and that the $\text{Re}_2\text{P-type}$ structure is more preferred for Re₂B. The formation enthalpy of these borides have been studied by the solid synthesis routes. The calculated elastic properties indicate that Re_2B_3 , ReB, and Re_2B phases are also potential hard materials. Although valenceelectron density was often employed to evaluate elastic properties of materials, our calculations indicate that the bulk elastic properties of these borides are not direct correlation with their valence-electron density. The analysis of electronic structure, charge density distribution, and Mulliken overlap population provides further understanding of the elastic and superconductivity properties of these borides.

1. Introduction

Rhenium borides have attracted considerable attention due to their superior mechanical and superconductivity properties. $1-6$ Among them, the structural, mechanical, and electronic properties of $\text{Re}B_2$ have been frequently studied both experimentally and theoretically.^{1,7-11} Furthermore, the superconductivity of Re_3B , Re_7B_3 , and Re_2B phases have also been reported, and their superconductivity transition temperature (*Tc*) is 4.8, 3.3, and 2.8 K, respectively.²⁻⁴

- (1) Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. *Science* **2007**, *316*, 436.
- (2) Kawano, A.; Mizuta, Y.; Takagiwa, H.; Muranaka, T.; Akimitsu, J. *J. Phys. Soc. Jpn.* **2003**, *72*, 1724.
- (3) Savitskii, E. M.; Baron, V. V.; Efimov, Y. V.; Bychkova M. I.; Myzenkova, L. F. *Superconducting Materials*; Plenum Press: New York, 1973.
- (4) Strukova, G. K.; Degtyareva, V. F.; Shovkun, D. V.; Zverev, V. N.; Kiiko, V. M.; Ionov, A. M. Chaika, A. N. arXiv: cond-mat/ 0105293.
- (5) Lue, C. S.; Tao, Y. F.; Su, T. H. *Phys. Re*V*. B* **²⁰⁰⁸**, *⁷⁸*, 033107.
- (6) Chen, X. Q.; Fu, C. L.; Krcmar, M.; Painter, G. S. *Phys. Re*V*. Lett.* **2008**, *100*, 196403.
- (7) Hao, X.; Xu, Y.; Wu, Z.; Zhou, D.; Liu, X.; Cao, X.; Meng, J. *Phys. Re*V*. B* **²⁰⁰⁶**, *⁷⁴*, 224112. (8) Wang, Y. X. *Appl. Phys. Lett.* **2007**, *91*, 101904.
-
- (9) Zhang, R. F.; Veprek, S.; Argon, A. S. *Appl. Phys. Lett.* **2007**, *91*, 201914.
- (10) Liang, Y.; Zhang, B. *Phys. Re*V*. B* **²⁰⁰⁷**, *⁷⁶*, 132101.
- (11) Zhou, W.; Wu, H.; Yildirim, T. *Phys. Re*V*. B* **²⁰⁰⁷**, *⁷⁶*, 184113.

10.1021/ic8019606 CCC: \$40.75 2009 American Chemical Society **Inorganic Chemistry,** Vol. 48, No. 2, 2009 **581** Published on Web 12/15/2008

However, the structure of $Re₂B$ has not been determined in the experiment, and the structural and physical properties of other rhenium borides, such as ReB, Re_2B_5 , Re_3B_7 , and ReB3 (see ref 12, Table 1), are still far from being clear. Systemic studies on the structural stability and elastic and electronic properties of rhenium borides with different boron concentration have not been carried out. In this work, by means of first principle total energy calculations, we present the deep studies on the structural stability, elastic properties of Re₃B, Re₇B₃, Re₂B, ReB, Re₂B₃, Re₃B₇, Re₂B₅, and ReB₃. Generally speaking, the bulk modulus and shear modulus show the same trends. However, our calculations indicate the trends of the bulk modulus and shear modulus of the calculated rhenium borides are opposite: The bulk modulus of these borides gradually decreases with the increase of boron concentration (from Re_7B_3 to Re_2B_2). The shear modulus *G* value increases with the enhancement of boron concentration from Re_7B_3 to Re_2 . And also the physical and superconductivity properties of these borides are further understood via the calculations in the electronic structure, charge density distribution, and Mulliken overlap population.

2. Crystal Structure and Computational Method

Structures. In the present study, the structures of Re_3B , Re_7B_3 , $ReB₂$, and $ReB₃$ are presented by the experimentally determined orthorhombic (space group *Cmcm*) and hexagonal (space group

^{*} To whom correspondence should be addressed. E-mail: fmgao@ ysu.edu.cn.

 $P6₃mc$) phases.¹³ For the other borides, such as Re₂B, ReB, Re₂B₃, $Re₃B₇$, and $Re₂B₅$, no experimentally structural parameters are found up to now, we thus select some possible structures. The structures of Re2P (space group *Pbnm*), Fe2B (space group *I*4*/mcm*), W2B (space group *P*6*mmm*), and W2C (space group *Pnnm*) have been considered for Re2B phase. For the crystal structure of ReB, we possess the four possible structures: WC (space group *P*6*m*2), NiAs (space group *P*63/*mmc*), FeB (space group *Pnma*), CrB (space group *Cmcm*), Wurtzite (space group *P*6₃*mc*), NaCl (space group *Fm*3*m*), CsCl (space group $Pm\overline{3}m$), and ZnS (space group $F4\overline{3}m$). For the compound of Re_2B_3 , the hexagonal Os_2B_3 -type (space group $P6_3$ / *mmc*) and anti-Ta₃B₂-type (space group $P4/mbm$) are considered.¹³ Furthermore, the hexagonal anti-Re₇B₃-type (space group *P6₃/mmc*) is chosen for Re_3B_7 . W₂B₅-type phases with space group (space group *P*63/*mmc*) and Mo2B5-type phases with space group (space group $\overline{R_3}m$) are adopted for Re_2B_5 in the present calculation.⁹ Moreover, for comparison, rhenium (Re) is also calculated.

Method. The geometry optimization and electronic properties were calculated using the CASTEP code¹⁴ based on the density functional theory within the generalized gradient approximation (GGA-PBE).15 The exchange and correlation functional was treated by norm-conserving pseudopotential. An energy cutoff of 440 eV was performed in the convergence calculations, and Brillouin zone integration was performed using the special *k*-point Monkhorst-Pack sampling scheme. (The detailed information is given in Table $2)$,¹⁶ and finite displacement methods¹⁷ are applied for the theoretical phonon calculation.

3. Results and Discussion

Structural Features. The equilibrium lattice constants of rhenium borides with different boron concentration were obtained by performing total-energy calculations as shown in Table 1. It can be seen that the calculated lattice parameters of Re3B, *a*, *b*, and *c*, are in excellent agreement with the existing experimental data, $1-3.5-11,13,18$ with a difference of about 0.017, 0.087, and 0.058 Å, respectively. In this structure, each B atom locates at the center of triangular prism of Re atom (see Figure 1a), $13,19$ and the shortest distances of $Re-B$ in Re_3B , 2.20 Å, is smaller than the sum of bonding radii, 2.16 Å, of Re $(r=1.28 \text{ Å})$ and B $(r=0.88$ Å) atoms,²⁰ suggesting the strong bonding feature. For Re7B3(see Figure 1b), each B atom is at the center of trigonal pyramid of Re atom^{13,19} with Re-B between 2.182 and 2.645 Å. The Re-Re bond is separated range upward from

- (12) Minyaev, R. M.; Hoffmann, R. *Chem. Mater.* **1991**, *3*, 547, and references therein.
- (13) Wyckoff, R. W. G.; *Crystal Structures*, 2nd ed.; Krieger: Malabar, India, 1986.
- (14) Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. *J. Phys.: Condens. Matter* **2002**, *14*, 2717.
- (15) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Re*V*. Lett.* **¹⁹⁹⁶**, *⁷⁷*, 3865.
(16) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- (16) Monkhorst, H. J.; Pack, J. D. *Phys. Re*V*. B* **¹⁹⁷⁶**, *¹³*, 5188. (17) Montanari, B.; Harrison, N. M. *Chem. Phys. Lett.* **2002**, *364*, 528–
- 534.
- (18) Cynn, H.; Klepeis, J. E.; Yoo, C. S.; Young, D. A. *Phys. Re*V*. Lett.,* **2002**, *88*, 135701.
- (19) Villars, P.; Cenzual, K.; Daams, J.; Gladyshevskii, R.; Shcherban, O.; Dubenskyy, V.; Melnichenko-Koblyuk, N.; Pavlyuk, O.; Stoiko, S.; Sysa, L. *Landolt-Börnstein- Group III Condensed Matter*; Springer: Berlin, 2006.
- (20) Alekseeva, A. M.; Abakumov, A. M.; Chizhov, P. S.; LeitheJasper, A.; Schnelle, W.; Prots, Yu.; Hadermann, J.; Antipov, E. V.; Grin, Yu. *Inorg. Chem.* **2007**, *46*, 7378.

2.781 Å. The discrepancies in the lattice constants (*a* and *c*) of Re_7B_3 are less than 0.049 and 0.106 Å, respectively. Furthermore, for the $\text{Re}B_2$ phase, the close-packed Re layers alternate with puckered triangle-mesh B layers along [001] (see Figure 1f).^{13,19} The calculated lattice constants of $\text{Re}B_2$ $(a = 2.894$ and $c = 7.416$ Å) are very close to the experimental values ($a = 2.900$ and $c = 7.479$ Å).¹ These results suggest that the present calculations are reasonable. Moreover, we also increase the cutoff energy and the number of *k*-points to 550 eV and $10 \times 10 \times 10$ for all the studied borides; the total energy of these borides changes less than 1% per atom (see Table 2), indicating the convergence of present calculations. Furthermore for the structure of $Re₂B$ phase, the Re_2 P-type structure is more preferred than the Fe₂B, W₂B, and Fe₂C-type structures (see Table 3). The Re_2P -type Re_2B consist of BRe_7 polyhedra (see Figure 1c). The interatomic distances of Re-B vary from 2.202 to 2.301 Å, and the $Re-B-Re$ angles are between 61.27 and 87.23 degree. For ReB phase, the calculated total energy of ReB in these different structures indicates that the phase with WCtype structure is more energetically stable than the other structures shown in Table 4, which is similar with the previous studied compound of OsB.^{21} The WC-type ReB is built by the infinite columns of base-linked $BRe₆$ trigonal prisms share edges to form a 3D-framework. (see Figure 1d), 13,19 and the interatomic distance of Re-B in ReB, 2.212 Å, is slightly larger than the sum of bonding radii, 2.16 Å, of Re and B atoms. Furthermore, the results of Re_2B_3 phase indicate that the $Os₂B₃$ -type structure has lower energy than that of the anti-Ta₃B₂ type structure. This Os_2B_3 -type Re_2B_3 phase consists of the infinite slabs of $BRu₆$ trigonal prisms and puckered hexagon-mesh B layers alternate along [001] (see Figure 1e).^{13,19} Finally, for Re_2B_5 phase, the W_2B_5 -type structure is more stable in energy than that of $Mo₂B₅$ -type phase (see Figure 1h). In the present work, we have calculated the more energetically stable structures for $Re₂B$, ReB, Re_2B_3 , and Re_2B_5 in detail. The proposed structures of Re_3B_7 and Re_3B_3 are also shown in Figure 1g and i.

Formation Enthalpy Considerations. To explore the possible synthesis routes in the experiment, we also calculate the formation enthalpy of these borides. The previous experiments suggest that rhenium borides could be synthesized by the solid reaction of rhenium and boron.^{1,2,5} We thus calculated the formation enthalpy by the following equations, and the results were also summarized in Table 1: $\Delta H = E_{\text{total}}(\text{Re}_x \text{B}_y) - (xE_{\text{total}}(\text{Re}) + yE_{\text{total}}(\text{B}))$. The negative values of the formation enthalpies indicate that they are thermodynamically stable to be experimentally synthesized.²² From that, we notice that the values of formation enthalpies are all negative from Re_3 B to Re_2 phases, which explain these borides have been experimentally observed.¹⁻⁵ Among these borides, the Re_7B_3 phase has a relatively lower formation enthalpy than the other boride phases, which suggesting that the Re_7B_3 phase can be easily obtained under ambient condition in the Re-B system. Whereas the phases

⁽²¹⁾ Gou, H. Y.; Hou, L.; Zhang, J. W.; Li, H.; Sun, G. F.; Gao, F. M. *Appl. Phys. Lett.* **2006**, *88*, 221904.

⁽²²⁾ Shein, I. R.; Ivanovskii, A. L. *Phys. Re*V*. B* **²⁰⁰⁶**, *⁷³*, 144108.

Properties of Rhenium Borides

Figure 1. Crystal structure of rhenium borides: (a) Re₃B, (b) Re₇B₃, (c) Re₂B, (d) ReB, (e) Re₂B₃, (f) ReB₂, (g) Re₃B₇, (h) Re₂B₅, and (i) ReB₃.

 (n)

Table 1. Calculated Lattice Parameters, *a* (Å), *b* (Å), *c* (Å), Formation Enthalpy, ∆*H* (eV), Bulk Modulus *B* (GPa), Shear Modulus *G* (GPa), Young's Modulus *E* (GPa), and Poisson's Ratio (*ν*) of Rhenium and Rhenium Borides and Compared with Available Experimental Data

		$\mathfrak a$	b	\mathcal{C}	ΔH	B	G	E	$\boldsymbol{\nu}$
Re	expt. ¹¹	2.761		4.458		372^{16}			
		2.760		4.433		380	177	460	0.2984
Re ₃ B	expt. ²	2.896	9.317	7.270					
		2.881	9.304	7.328	-0.80	379			
Re ₇ B ₃	expt. ¹¹	7.540		4.772					
	expt. ²	7.516		4.890					
		7.491		4.878	-2.31	378	160	420	0.3145
Re ₂ B		9.750	5.154	2.799	-0.51	367	216	542	0.2540
ReB		2.875		2.925	-0.62	359	249	607	0.2185
Re_2B_3		2.887		13.258	-1.96	351	264	633	0.1993
ReB ₂	$expt.$ ¹	2.900		7.479		360			
		2.894		7.416	-1.34	348	288	677	0.1757
Re ₃ B ₇		7.357		7.756	2.66	279			
Re ₂ B ₅		3.072		14.126	3.80	321			
ReB ₃		3.141		7.586	3.08	297			

Table 2. Parameters (*E*cut-off and *k* point) of the Geometry Optimization and the Difference of Total Energy, ∆*E* (eV/atom) for Rhenium Borides

phase	E_{cutoff} and k point	E_{cutoff} and k point	ΔE (eV/atom)
Re ₃ B	440 eV, $9 \times 3 \times 3$	550 eV, $10 \times 10 \times 10$	0.82%
Re ₇ B ₃	440 eV, $4 \times 4 \times 6$	550 eV, $10 \times 10 \times 10$	0.54%
Re ₂ B	440 eV, $3 \times 5 \times 9$	550 eV, $10 \times 10 \times 10$	0.49%
ReB	440 eV, $10 \times 10 \times 10$	550 eV, $10 \times 10 \times 10$	0.63%
Re ₂ B ₃	440 eV, $10 \times 10 \times 2$	550 eV, $10 \times 10 \times 10$	0.91%
ReB ₂	440 eV, $10 \times 10 \times 4$	550 eV, $10 \times 10 \times 10$	0.40%
Re ₃ B ₇	440 eV, $4 \times 4 \times 4$	550 eV, $10 \times 10 \times 10$	0.07%
Re ₂ B ₅	440 eV, $9 \times 9 \times 2$	550 eV, $10 \times 10 \times 10$	0.02%
	ReB ₃ 440 eV, $9 \times 9 \times 4$	550 eV, $10 \times 10 \times 10$	0.39%

Table 3. Calculated Total Energy of ReB in the Different Structures

phase	type	space group	energy (eV/fu)
ReB	WС	P6m2	-382.6100
	NiAs	$P6\sqrt{mmc}$	-382.4523
	FeB	Pnma	-382.1946
	CrB	Cmcm	-382.1732
	Wurtzite	P6 ₃ mc	-381.8735
	NaCl	$Fm\overline{3}m$	-381.5583
	CsCl	$Pm\overline{3}m$	-381.3302
	ZnS	$F4\overline{3}m$	-380.2810

Table 4. Calculated Total Energy of Re₂B in the Different Structures

of Re_3B_7 , Re_2B_5 , and Re_3B_3 have larger positive formation enthalpies, which may imply that these phases will be prone to decompose in the course of synthesis. It is impossible to stabilize these high borides using this synthesis routes.

Elastic Properties. The complete sets of zero-pressure single crystal elastic constants are calculated to obtain the elastic properties of rhenium borides. The elastic stability is first checked by the whole set of elastic stiffness constants c_{ij} that satisfies the Born-Huang criterion.²³ Our results indicate that the phases of Re_3B , Re_3B_7 , and Re_2B_5 are elastically unstable under ambient condition. A nonstoichiometric sample for Re3B may be obtained in the experiments.²⁻⁵ Furthermore, the calculated bulk modulus (*B*), shear modulus (*G*), Young's modulus (*E*), and Poisson's ratio

Figure 2. Temperature dependence of Debye stiffness of Re₂B, ReB, Re₂B₃, and ReB₂.

Figure 3. Elastic properties (*B*, *G*, *E*) and valence-electron density (VED)of rhenium borides.

(*ν*) of both elastically and thermodynamically stable rhenium borides were calculated according to the Voight-Reuss-Hill (VRH) approximations²⁴ as also listed in Table 1. Our calculated elastic moduli of $\text{Re}B_2$ are in satisfactory agreement with the available experimental and theoretical results.⁵⁻¹¹ In addition, we notice that the bulk modulus of Re7B3 (378 GPa) is slightly smaller than that of the parent metal Re (380 GPa) ,¹⁸ which is also a low compressible material. Moreover, the bulk modulus of these borides gradually decreases with the increase of boron concentration (from Re_7B_3 to Re_2) compared with that of the parent Re metal. Furthermore, the *G* value is of gradual increase with the enhancement of boron concentration from Re_7B_3 to Re_2B_2 , until the *G* modulus reaches at the maximum value, 288 GPa, for $\text{Re}B_2$. And the *G* values of Re_2B , $\text{Re}B$, and Re_2B_3 are 216, 249, and 264 GPa, respectively. In addition, besides $\text{Re}B_2$, ReB, and Re_2B_3 also have lower Poisson's ratio. The largest *G* value and the low Poisson's ratio of Re₂B, ReB, $Re₂B₃$, and $ReB₂$ indicate the strong directional bonding, which may suggest that they are also potential hard materials.^{25,26} At the same time, we also calculate the temperature

⁽²³⁾ Born M.; Huang, K.; *Dynamical Theory of Crystal Lattices*; Clarendon: Oxford, U.K., 1956.

⁽²⁴⁾ Hill, R. *Proc. Phys. Soc. London* **1952**, *65*, 350.

⁽²⁵⁾ Chen, X.; Struzhkin, V. V.; Wu, Z.; Somayazulu, M.; Qian, J.; Kung, S.; Christensen, A. N.; Zhao, Y.; Cohen, R. E.; Mao, H. K.; Hemley, R. J. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 3198.

Figure 4. Total (black line) and partial (green line, Re-d state; Red line, B-p state) densities of states (DOSs) of (a) Re, (b) Re₂B, (c) ReB, (d) Re₂B₃, (e) $ReB₂$, and (f) $ReB₃$.

dependence of Debye stiffness²⁷ of Re₂B, ReB, Re₂B₃, and $ReB₂$ by means of theoretical phonon density of states displayed in Figure 2. It can be seen that the Debye temperature of ReB₂ within the range of studied temperature is greater than that of the other borides but much smaller than that of c -BN.²⁷ The present results indicate that the $\text{Re}B_2$ phase is a stiffest solid in the Re-B system but much softer than that of *c*-BN.27

On the basis of the correlation between bulk modulus and valence electron densities, $1,28,29$ it is expected that the bulk elastic properties of these rhenium borides may be possible correlation with their valence-electron density (VED). We thus calculated VED of these borides shown in Figure 3. The calculated VED of Re, 0.479 electrons/ \AA^3 , is in excellent agreement with the experimental data, 0.476 electrons/ \AA ³. From Figure 3, the VED increases from $Re₇B₃$ to $ReB₂$ phase, but the *B* value decreases increasingly, which is opposite to the change of metal from Re to Os (the bulk modulus increase from Re (360 GPa) to Os (395 GPa) with the increase of valence-electron density from 0.476 electrons/ \AA^3 in Re to 0.572 electrons/ \AA^3 in Os).^{1,18} While the general trend of *G* and *E* in these borides is the same as that of VED. It thus can be concluded that the valence-electron density is impossibly direct correlation with the bulk modulus within the Re-B system.

Bonding Properties. The electronic structure is crucial to understand the origin of elastic and physical properties of these borides; the total and partial densities of states (DOSs) of Re, Re_2B , ReB , Re_2B ₃, ReB ₂, and ReB ₃ are calculated at zero pressure as shown in Figures $2-5(a-f)$, where the vertical line is the Fermi level (E_F) . From that we see that DOS spectra of all these borides cross at *E*F, showing the metallic behavior. The lowest energy of the DOS spectra is formed by the chiefly B-2s states. In the vicinity of the Fermi level the contribution of DOS is mainly composed of Re-5d and B-2p states, and more importantly, the hybridizations of Re-5d and B-2p states are much deeper in energy from the E_F , indicating the potential covalent bonding character in these borides.³⁰⁻³² For Re₃B and Re₇B₃, the DOS spectrum of Re is preserved because of the addition of lower boron concentration (not shown here), which explain the higher value of bulk modulus. Furthermore, we notice that the contribution to the Fermi level of B-2p increases with further addition of boron concentration (from $Re₂B$ to ReB2), suggesting the increasing hybridization between Re-5d and B-2p states, and the $\text{Re}B_2$ phase has the lowest value of $N(E_F)$ in all the studied borides, indicating the relatively strong covalent bonding behavior in the ReB₂. Finally, for ReB3, in addition to the contribution of Re-5d and B-2p states, the B-2s states have a relatively significant contribution at the Fermi level compared with the other borides, which is quite different with that of the other borides. To further comprehend the bonding mechanism of these borides, we have displayed the charge density distribution in different planes (Figure 5a-f). From Figure 5a, we observe that the parent metal Re has a metallic bonding behavior because of the uniform distribution of charge density. The addition of boron results in an increase of the charge density and forms

⁽²⁶⁾ Jiang, C. *Appl. Phys. Lett.* **2008**, *92*, 041909.

⁽²⁷⁾ Tohei, T.; Kuwabara, A.; Oba, F.; Tanaka, I. *Phys. Re*V*. B* **²⁰⁰⁶**, *⁷³*, 064304.

⁽²⁸⁾ Cumberland, R. W.; Weinberger, M. B.; Gilman, J. J.; Clark, S. M.; Tolbert, S. H.; Kaner, R. B. *J. Am. Chem. Soc.* **2005**, *127*, 7264.

⁽²⁹⁾ Kaner, R. B.; Gilman, J. J.; Tolbert, S. M. *Science* **2005**, *308*, 1268.

⁽³⁰⁾ Magnuson, M.; Mattesini, M.; Li, S.; Höglund, C.; Beckers, M.; Hultman, L.; Eriksson, O. *Phys. Re*V*. B* **²⁰⁰⁷**, *⁷⁶*, 195127.

⁽³¹⁾ Shein, I. R.; Shein, K. I.; Ivanovskii, A. L. *Phys. B* **2007**, *387*, 184.

⁽³²⁾ Kojima, H.; Sahara, R.; Shishido, T.; Nomura, A.; Kudou, K.; Okada, S.; Kumar, V.; Nakajima, K.; Kawazoe, Y. *Appl. Phys. Lett.* **2007**, *91*, 081901.

Figure 5. Charge denstiy distribution in different planes for rhenium (a) and rhenium borides (b) Re_2B , (c) Re_3B , (e) Re_3B , (e) Re_2B , and (f) Re_3B .

the finite covalent bonds in the $Re₂B$ (see Figure 5b), which is in agreement with the DOS results. Further increasing the boron concentrations up to ReB (Figure 5c), the directional bonding is quite strong between Re and B atoms, which is also conformed by the calculated average Mulliken overlap population (MOP) of $Re-B$ bond (0.58 in $Re₂B$ and 1.93 in ReB). For $Re₂B₃$, there exist strong directional bonding not only between Re and B atoms but also between B and B atoms (Figure 5d). Moreover, the calculated MOP of B-^B bond in Re_2 B₃ is 2.21, but the MOP of $\text{Re}-\text{B}$ bond in Re_2 B₃ (0.55) is smaller than that of the calculated value in ReB

Table 5. Calculated Partial and Total Density of States at the Fermi Level ($PN(E_F)$ and $TN(E_F)$, States/eV cell), Specific Heat Coefficients ($γ$, mJ mol⁻¹ K⁻²), and Electron-Phonon Coupling Constant ($λ$) of Rhenium Borides and Compared with Available Experimental Data

		$PN(E_F)$					
	Re-5d	$B-2p$	$B-2s$	$TN(E_F)$	γ theor	$\gamma_{\rm expti}$	λ
Re ₃ B	1.929	0.093	0.010	2.159	5.08	6.3	0.24
Re ₇ B ₃	4.434	0.255	0.009	4.840	11.39		
Re ₂ B	0.845	0.063	0.004	0.977	2.30		
ReB	0.430	0.094	0.003	0.551	1.30		
Re ₂ B ₃	1.227	0.325	0.005	1.597	3.76		
ReB ₂	0.409	0.117	0.002	0.544	1.28		

(1.93), which may suggest the decreasing covalent bonding character of $Re-B$ bond in Re_2B_3 . When the boron concentrations increased to $\text{Re}B_2$ (see Figure 5e), the zigzag network formed by the Re-B and B-B bonds strength the covalent bonding to further increase the hardness of $\text{Re}B_2$.⁶⁻¹¹ This distinctly structural arrangement between $Re₂B₃$ and $ReB₂$ phases explains the difference of elastic moduli between these phases, although the calculated MOP of both Re-B and B-B bond in $\text{Re}B_2$ is similar with that of Re_2B_3 (see Figure $1e-f$). For ReB_3 phase, there is also a strong directional bonding in B-B atom (Figure 5f). However, the calculated MOP of B-B bond in $\text{Re}B_3$ (1.59) is much smaller than that in $\text{Re}B_2$, and the MOP of all the B-Re bonds is negative value, indicating the antibonding behavior of all the Re-^B bonds in ReB₃. This may explain the previous studied instability of ReB₃. Furthermore, the calculated partial and total DOS (PN (E_F) and TN (E_F) at the E_F of these borides are shown in Table 5 to study the experimentally found superconducting in these borides. From that we notice that a larger value of density of states appears at Fermi level for $Re₃B$ and $Re₇B₃$, which may explain the relatively high superconductivity temperature (Tc) in these compounds, 2^{-5} and we also find that the dominating contributions to the $TN(E_F)$ derive from Re-5d states (larger than 75%), whereas the contributions of the B 2p states gradually increase from 4.3% in Re_7B_3 to 21.5% in Re_2 . It is known that the B-2p band contribution to the DOS at the Fermi level is important to the superconductivity in $Mg_{B_2}^{33}$. It is expected that the ReB2 phase may be a high *Tc* superconductor, while the previous studies indicate that ReB2 phase had *Tc* less than 1 K and even no superconductivity signature. This noticeable difference in Tc between MgB_2 and ReB_2 may suggest the different superconductivity mechanism. Recently, the results of Lue et al.⁵ explain that the Re_3B and Re_7B_3 phases are *s*-wave superconductor by means of the ¹¹B nuclear magnetic resonance spectroscopy. The calculated B-2*s* Fermi-level densities of states of these borides are also shown in Table 5. From that we found that B-2s is important for the superconductivity signature although the contribution to the Fermi-level densities of states is negligible. Moreover, according to the free electron model, we also calculate the specific heat coefficients γ ($\gamma_{\text{theor}} = (\pi^2/3)N(E_F)k_B^2$)¹⁸ listed
in Table 5. From these values, we can simple calculate the in Table 5. From these values, we can simple calculate the electron-phonon coupling constant λ ($\gamma_{\text{expt.}} = \gamma_{\text{theor.}}(1 + \lambda)$) of these borides. The calculated λ of Re₃B, 0.24, is much

⁽³³⁾ Nakamura, J.; Yamada, N.; Kuroki, K.; Callcott, T. A.; Ederer, D. L.; Denlinger, J. D.; Perera, R. C. C. *Phys. Re*V*. B* **²⁰⁰¹**, *⁶⁴*, 174504.

Properties of Rhenium Borides

smaller that of MgB₂ ($\lambda = 2$),³⁴ indicating that these borides are the weak coupling compounds.¹⁶ Therefore, the analysis of the electronic structure is important for the understanding of the mechanical and physical properties of rhenium borides, which also suggests that the Re-B system can be tailored by controlling the boron concentration during the materials design and synthesis in future.

4. Conclusion

To conclude, using first principle calculations, the lattice parameters, structural stability, bulk and shear moduli, Young's modulus, Poisson's ratio and valence electron densities, and Debye stiffness of rhenium borides with different boron concentration have been calculated. The crystal structures of $Re₂B$ and ReB have been predicted. Moreover, the calculations show that $Re₇B₃$, $Re₂B$, ReB , and $Re₂B₃$ and $ReB₂$ phases are both thermodynamically and elastically stable, and the calculations of bulk modulus of these stable phases reveal that they are potential low compressible materials. Besides $\text{Re}B_2$, the larger shear moduli and lower Poisson's ratio of Re_2B , ReB , and Re_2B_3 indicate that they are also potential hard materials. In addition, the studies indicate that the bulk elastic properties of these stable borides are not direct correlation with their valence-electron density. The analysis of electronic structure, charge density distribution, and Mulliken overlap population is necessary to further explain the elastic and superconductivity properties.

Acknowledgment. The authors acknowledge financial support from NNSFC (50672080) and NCET and NEDDC (200434) and the Science Foundation of Yanshan University for the Excellent Ph.D.Students.

IC8019606

⁽³⁴⁾ Walti, Ch.; Felder, E.; Degen, C.; Wigger, G.; Monnier, R.; Delley, B.; Ott, H. R. *Phys. Re*V*. B* **²⁰⁰¹**, *⁶⁴*, 172515.